$\require{mathtools} \newcommand{\nc}{\newcommand} % %%% GENERIC MATH %%% % % Environments \newcommand{\al}[1]{\begin{align}#1\end{align}} % need this for \tag{} to work \renewcommand{\r}{\mathrm} \renewcommand{\t}{\textrm} % % Delimiters % (I needed to create my own because the MathJax version of \DeclarePairedDelimiter doesn't have \mathopen{} and that messes up the spacing) % .. one-part \newcommand{\p}[1]{\mathopen{}\left( #1 \right)} \renewcommand{\P}[1]{^{\p{#1}}} \renewcommand{\b}[1]{\mathopen{}\left[ #1 \right]} \newcommand{\set}[1]{\mathopen{}\left\{ #1 \right\}} \newcommand{\abs}[1]{\mathopen{}\left\lvert #1 \right\rvert} \newcommand{\floor}[1]{\mathopen{}\left\lfloor #1 \right\rfloor} \newcommand{\ceil}[1]{\mathopen{}\left\lceil #1 \right\rceil} \newcommand{\inner}[1]{\mathopen{}\left\langle #1 \right\rangle} \newcommand{\norm}[1]{\mathopen{}\left\lVert #1 \strut \right\rVert} \newcommand{\frob}[1]{\norm{#1}_\mathrm{F}} \newcommand{\mix}[1]{\mathopen{}\left\lfloor #1 \right\rceil} %% .. two-part \newcommand{\inco}[2]{#1 \mathop{}\middle|\mathop{} #2} \newcommand{\co}[2]{ {\left.\inco{#1}{#2}\right.}} \newcommand{\cond}{\co} % deprecated \newcommand{\pco}[2]{\p{\inco{#1}{#2}}} \newcommand{\bco}[2]{\b{\inco{#1}{#2}}} \newcommand{\setco}[2]{\set{\inco{#1}{#2}}} \newcommand{\at}[2]{ {\left.#1\strut\right|_{#2}}} \newcommand{\pat}[2]{\p{\at{#1}{#2}}} \newcommand{\bat}[2]{\b{\at{#1}{#2}}} \newcommand{\para}[2]{#1\strut \mathop{}\middle\|\mathop{} #2} \newcommand{\ppa}[2]{\p{\para{#1}{#2}}} \newcommand{\pff}[2]{\p{\ff{#1}{#2}}} \newcommand{\bff}[2]{\b{\ff{#1}{#2}}} \newcommand{\bffco}[4]{\bff{\cond{#1}{#2}}{\cond{#3}{#4}}} % % Greek \newcommand{\eps}{\epsilon} \newcommand{\veps}{\varepsilon} \newcommand{\vpi}{\varpi} % the following cause issues with real LaTeX tho :/ maybe consider naming it \fhi instead? \let\fi\phi % because it looks like an f \let\phi\varphi % because it looks like a p \renewcommand{\th}{\theta} \newcommand{\Th}{\Theta} \newcommand{\om}{\omega} \newcommand{\Om}{\Omega} % % Miscellaneous \newcommand{\LHS}{\mathrm{LHS}} \newcommand{\RHS}{\mathrm{RHS}} \DeclareMathOperator{\cst}{const} % .. operators \DeclareMathOperator{\poly}{poly} \DeclareMathOperator{\polylog}{polylog} \DeclareMathOperator{\quasipoly}{quasipoly} \DeclareMathOperator{\negl}{negl} \DeclareMathOperator*{\argmin}{arg\thinspace min} \DeclareMathOperator*{\argmax}{arg\thinspace max} % .. functions \DeclareMathOperator{\id}{id} \DeclareMathOperator{\sign}{sign} \DeclareMathOperator{\err}{err} \DeclareMathOperator{\ReLU}{ReLU} % .. analysis \let\d\undefined \newcommand{\d}{\operatorname{d}\mathopen{}} \newcommand{\dd}[1]{\operatorname{d}^{#1}\mathopen{}} \newcommand{\df}[2]{ {\f{\d #1}{\d #2}}} \newcommand{\ds}[2]{ {\sl{\d #1}{\d #2}}} \newcommand{\ddf}[3]{ {\f{\dd{#1} #2}{\p{\d #3}^{#1}}}} \newcommand{\dds}[3]{ {\sl{\dd{#1} #2}{\p{\d #3}^{#1}}}} \renewcommand{\part}{\partial} \newcommand{\partf}[2]{\f{\part #1}{\part #2}} \newcommand{\parts}[2]{\sl{\part #1}{\part #2}} \newcommand{\grad}[1]{\mathop{\nabla\!_{#1}}} % .. sets \newcommand{\es}{\emptyset} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\zo}{\set{0,1}} \newcommand{\pmo}{\set{\pm 1}} \newcommand{\zpmo}{\set{0,\pm 1}} % .... set operations \newcommand{\sse}{\subseteq} \newcommand{\out}{\not\in} \newcommand{\minus}{\setminus} \newcommand{\inc}[1]{\union \set{#1}} % "including" \newcommand{\exc}[1]{\setminus \set{#1}} % "except" % .. over and under \renewcommand{\ss}[1]{_{\substack{#1}}} \newcommand{\OB}{\overbrace} \newcommand{\ob}[2]{\OB{#1}^\t{#2}} \newcommand{\UB}{\underbrace} \newcommand{\ub}[2]{\UB{#1}_\t{#2}} \newcommand{\ol}{\overline} \newcommand{\tld}{\widetilde} % deprecated \renewcommand{\~}{\widetilde} \newcommand{\HAT}{\widehat} % deprecated \renewcommand{\^}{\widehat} \newcommand{\rt}[1]{ {\sqrt{#1}}} \newcommand{\for}[2]{_{#1=1}^{#2}} \newcommand{\sfor}{\sum\for} \newcommand{\pfor}{\prod\for} % .... two-part \newcommand{\f}{\frac} \renewcommand{\sl}[2]{#1 /\mathopen{}#2} \newcommand{\ff}[2]{\mathchoice{\begin{smallmatrix}\displaystyle\vphantom{\p{#1}}#1\\[-0.05em]\hline\\[-0.05em]\hline\displaystyle\vphantom{\p{#2}}#2\end{smallmatrix}}{\begin{smallmatrix}\vphantom{\p{#1}}#1\\[-0.1em]\hline\\[-0.1em]\hline\vphantom{\p{#2}}#2\end{smallmatrix}}{\begin{smallmatrix}\vphantom{\p{#1}}#1\\[-0.1em]\hline\\[-0.1em]\hline\vphantom{\p{#2}}#2\end{smallmatrix}}{\begin{smallmatrix}\vphantom{\p{#1}}#1\\[-0.1em]\hline\\[-0.1em]\hline\vphantom{\p{#2}}#2\end{smallmatrix}}} % .. arrows \newcommand{\from}{\leftarrow} \DeclareMathOperator*{\<}{\!\;\longleftarrow\;\!} \let\>\undefined \DeclareMathOperator*{\>}{\!\;\longrightarrow\;\!} \let\-\undefined \DeclareMathOperator*{\-}{\!\;\longleftrightarrow\;\!} \newcommand{\so}{\implies} % .. operators and relations \renewcommand{\*}{\cdot} \newcommand{\x}{\times} \newcommand{\sr}{\stackrel} \newcommand{\ce}{\coloneqq} \newcommand{\ec}{\eqqcolon} \newcommand{\ap}{\approx} \newcommand{\ls}{\lesssim} \newcommand{\gs}{\gtrsim} % .. punctuation and spacing \renewcommand{\.}[1]{#1\dots#1} \newcommand{\ts}{\thinspace} \newcommand{\q}{\quad} \newcommand{\qq}{\qquad} % % Levels of closeness \newcommand{\scirc}[1]{\sr{\circ}{#1}} \newcommand{\sdot}[1]{\sr{.}{#1}} \newcommand{\slog}[1]{\sr{\log}{#1}} \newcommand{\createClosenessLevels}[7]{ \newcommand{#2}{\mathrel{(#1)}} \newcommand{#3}{\mathrel{#1}} \newcommand{#4}{\mathrel{#1\!\!#1}} \newcommand{#5}{\mathrel{#1\!\!#1\!\!#1}} \newcommand{#6}{\mathrel{(\sdot{#1})}} \newcommand{#7}{\mathrel{(\slog{#1})}} } \let\lt\undefined \let\gt\undefined % .. vanilla versions (is it within a constant?) \newcommand{\ez}{\scirc=} \newcommand{\eq}{\simeq} \newcommand{\eqq}{\mathrel{\eq\!\!\eq}} \newcommand{\eqqq}{\mathrel{\eq\!\!\eq\!\!\eq}} \newcommand{\lez}{\scirc\le} \renewcommand{\lq}{\preceq} \newcommand{\lqq}{\mathrel{\lq\!\!\lq}} \newcommand{\lqqq}{\mathrel{\lq\!\!\lq\!\!\lq}} \newcommand{\gez}{\scirc\ge} \newcommand{\gq}{\succeq} \newcommand{\gqq}{\mathrel{\gq\!\!\gq}} \newcommand{\gqqq}{\mathrel{\gq\!\!\gq\!\!\gq}} \newcommand{\lz}{\scirc<} \newcommand{\lt}{\prec} \newcommand{\ltt}{\mathrel{\lt\!\!\lt}} \newcommand{\lttt}{\mathrel{\lt\!\!\lt\!\!\lt}} \newcommand{\gz}{\scirc>} \newcommand{\gt}{\succ} \newcommand{\gtt}{\mathrel{\gt\!\!\gt}} \newcommand{\gttt}{\mathrel{\gt\!\!\gt\!\!\gt}} % .. dotted versions (is it equal in the limit?) \newcommand{\ed}{\sdot=} \newcommand{\eqd}{\sdot\eq} \newcommand{\eqqd}{\sdot\eqq} \newcommand{\eqqqd}{\sdot\eqqq} \newcommand{\led}{\sdot\le} \newcommand{\lqd}{\sdot\lq} \newcommand{\lqqd}{\sdot\lqq} \newcommand{\lqqqd}{\sdot\lqqq} \newcommand{\ged}{\sdot\ge} \newcommand{\gqd}{\sdot\gq} \newcommand{\gqqd}{\sdot\gqq} \newcommand{\gqqqd}{\sdot\gqqq} \newcommand{\ld}{\sdot<} \newcommand{\ltd}{\sdot\lt} \newcommand{\lttd}{\sdot\ltt} \newcommand{\ltttd}{\sdot\lttt} \newcommand{\gd}{\sdot>} \newcommand{\gtd}{\sdot\gt} \newcommand{\gttd}{\sdot\gtt} \newcommand{\gtttd}{\sdot\gttt} % .. log versions (is it equal up to log?) \newcommand{\elog}{\slog=} \newcommand{\eqlog}{\slog\eq} \newcommand{\eqqlog}{\slog\eqq} \newcommand{\eqqqlog}{\slog\eqqq} \newcommand{\lelog}{\slog\le} \newcommand{\lqlog}{\slog\lq} \newcommand{\lqqlog}{\slog\lqq} \newcommand{\lqqqlog}{\slog\lqqq} \newcommand{\gelog}{\slog\ge} \newcommand{\gqlog}{\slog\gq} \newcommand{\gqqlog}{\slog\gqq} \newcommand{\gqqqlog}{\slog\gqqq} \newcommand{\llog}{\slog<} \newcommand{\ltlog}{\slog\lt} \newcommand{\lttlog}{\slog\ltt} \newcommand{\ltttlog}{\slog\lttt} \newcommand{\glog}{\slog>} \newcommand{\gtlog}{\slog\gt} \newcommand{\gttlog}{\slog\gtt} \newcommand{\gtttlog}{\slog\gttt} % % %%% SPECIALIZED MATH %%% % % Logic and bit operations \newcommand{\fa}{\forall} \newcommand{\ex}{\exists} \renewcommand{\and}{\wedge} \newcommand{\AND}{\bigwedge} \renewcommand{\or}{\vee} \newcommand{\OR}{\bigvee} \newcommand{\xor}{\oplus} \newcommand{\XOR}{\bigoplus} \newcommand{\union}{\cup} \newcommand{\inter}{\cap} \newcommand{\UNION}{\bigcup} \newcommand{\INTER}{\bigcap} \newcommand{\comp}{\overline} \newcommand{\true}{\r{true}} \newcommand{\false}{\r{false}} \newcommand{\tf}{\set{\true,\false}} \DeclareMathOperator{\One}{\mathbb{1}} \DeclareMathOperator{\1}{\mathbb{1}} % use \mathbbm instead if using real LaTeX \DeclareMathOperator{\LSB}{LSB} % % Linear algebra \newcommand{\spn}{\mathrm{span}} % do NOT use \span because it causes misery with amsmath \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\dom}{dom} \DeclareMathOperator{\Img}{Im} \newcommand{\transp}{\mathsf{T}} \newcommand{\T}{^\transp} % .. named tensors \newcommand{\namedtensorstrut}{\vphantom{fg}} % milder than \mathstrut \newcommand{\name}[1]{\mathsf{\namedtensorstrut #1}} \newcommand{\nbin}[2]{\mathbin{\underset{\substack{#1}}{\namedtensorstrut #2}}} \newcommand{\ndot}[1]{\nbin{#1}{\odot}} \newcommand{\ncat}[1]{\nbin{#1}{\oplus}} \newcommand{\nsum}[1]{\sum\limits_{\substack{#1}}} \newcommand{\nfun}[2]{\mathop{\underset{\substack{#1}}{\namedtensorstrut\mathrm{#2}}}} \newcommand{\ndef}[2]{\newcommand{#1}{\name{#2}}} \newcommand{\nt}[1]{^{\transp(#1)}} % % Probability \newcommand{\tri}{\triangle} \newcommand{\Normal}{\mathcal{N}} % .. operators \DeclareMathOperator{\supp}{supp} \let\Pr\undefined \DeclareMathOperator*{\Pr}{Pr} \DeclareMathOperator*{\G}{\mathbb{G}} \DeclareMathOperator*{\Odds}{Od} \DeclareMathOperator*{\E}{E} \DeclareMathOperator*{\Var}{Var} \DeclareMathOperator*{\Cov}{Cov} \DeclareMathOperator*{\K}{K} \DeclareMathOperator*{\corr}{corr} \DeclareMathOperator*{\median}{median} \DeclareMathOperator*{\maj}{maj} % ... information theory \let\H\undefined \DeclareMathOperator*{\H}{H} \DeclareMathOperator*{\I}{I} \DeclareMathOperator*{\D}{D} \DeclareMathOperator*{\KL}{KL} % .. other divergences \newcommand{\dTV}{d_{\mathrm{TV}}} \newcommand{\dHel}{d_{\mathrm{Hel}}} \newcommand{\dJS}{d_{\mathrm{JS}}} % %%% SPECIALIZED COMPUTER SCIENCE %%% % % Complexity classes % .. classical \newcommand{\Poly}{\mathsf{P}} \newcommand{\NP}{\mathsf{NP}} \newcommand{\PH}{\mathsf{PH}} \newcommand{\PSPACE}{\mathsf{PSPACE}} \renewcommand{\L}{\mathsf{L}} % .. probabilistic \newcommand{\formost}{\mathsf{Я}} \newcommand{\RP}{\mathsf{RP}} \newcommand{\BPP}{\mathsf{BPP}} \newcommand{\MA}{\mathsf{MA}} \newcommand{\AM}{\mathsf{AM}} \newcommand{\IP}{\mathsf{IP}} \newcommand{\RL}{\mathsf{RL}} % .. circuits \newcommand{\NC}{\mathsf{NC}} \newcommand{\AC}{\mathsf{AC}} \newcommand{\ACC}{\mathsf{ACC}} \newcommand{\ThrC}{\mathsf{TC}} \newcommand{\Ppoly}{\mathsf{P}/\poly} \newcommand{\Lpoly}{\mathsf{L}/\poly} % .. resources \newcommand{\TIME}{\mathsf{TIME}} \newcommand{\SPACE}{\mathsf{SPACE}} \newcommand{\TISP}{\mathsf{TISP}} \newcommand{\SIZE}{\mathsf{SIZE}} % .. keywords \newcommand{\coclass}{\mathsf{co}} \newcommand{\Prom}{\mathsf{Promise}} % % Boolean analysis \newcommand{\harpoon}{\!\upharpoonright\!} \newcommand{\rr}[2]{#1\harpoon_{#2}} \newcommand{\Fou}[1]{\widehat{#1}} \DeclareMathOperator{\Ind}{\mathrm{Ind}} \DeclareMathOperator{\Inf}{\mathrm{Inf}} \newcommand{\Der}[1]{\operatorname{D}_{#1}\mathopen{}} \newcommand{\Exp}[1]{\operatorname{E}_{#1}\mathopen{}} \DeclareMathOperator{\Stab}{\mathrm{Stab}} \DeclareMathOperator{\Tau}{T} \DeclareMathOperator{\sens}{\mathrm{s}} \DeclareMathOperator{\bsens}{\mathrm{bs}} \DeclareMathOperator{\fbsens}{\mathrm{fbs}} \DeclareMathOperator{\Cert}{\mathrm{C}} \DeclareMathOperator{\DT}{\mathrm{DT}} \DeclareMathOperator{\CDT}{\mathrm{CDT}} % canonical \DeclareMathOperator{\ECDT}{\mathrm{ECDT}} \DeclareMathOperator{\CDTv}{\mathrm{CDT_{vars}}} \DeclareMathOperator{\ECDTv}{\mathrm{ECDT_{vars}}} \DeclareMathOperator{\CDTt}{\mathrm{CDT_{terms}}} \DeclareMathOperator{\ECDTt}{\mathrm{ECDT_{terms}}} \DeclareMathOperator{\CDTw}{\mathrm{CDT_{weighted}}} \DeclareMathOperator{\ECDTw}{\mathrm{ECDT_{weighted}}} \DeclareMathOperator{\AvgDT}{\mathrm{AvgDT}} \DeclareMathOperator{\PDT}{\mathrm{PDT}} % partial decision tree \DeclareMathOperator{\DTsize}{\mathrm{DT_{size}}} \DeclareMathOperator{\W}{\mathbf{W}} % .. functions (small caps sadly doesn't work) \DeclareMathOperator{\Par}{\mathrm{Par}} \DeclareMathOperator{\Maj}{\mathrm{Maj}} \DeclareMathOperator{\HW}{\mathrm{HW}} \DeclareMathOperator{\Thr}{\mathrm{Thr}} \DeclareMathOperator{\Tribes}{\mathrm{Tribes}} \DeclareMathOperator{\RotTribes}{\mathrm{RotTribes}} \DeclareMathOperator{\CycleRun}{\mathrm{CycleRun}} \DeclareMathOperator{\SAT}{\mathrm{SAT}} \DeclareMathOperator{\UniqueSAT}{\mathrm{UniqueSAT}} % % Dynamic optimality \newcommand{\OPT}{\mathsf{OPT}} \newcommand{\Alt}{\mathsf{Alt}} \newcommand{\Funnel}{\mathsf{Funnel}} % % Alignment \DeclareMathOperator{\Amp}{\mathrm{Amp}} % %%% TYPESETTING %%% % % In "text" \newcommand{\heart}{\heartsuit} \newcommand{\nth}{^\t{th}} \newcommand{\degree}{^\circ} % remove these last two if using real LaTeX \newcommand{\qed}{\blacksquare} \newcommand{\qedhere}{\tag*{$\blacksquare$}} % % Fonts % .. bold \newcommand{\BA}{\boldsymbol{A}} \newcommand{\BB}{\boldsymbol{B}} \newcommand{\BC}{\boldsymbol{C}} \newcommand{\BD}{\boldsymbol{D}} \newcommand{\BE}{\boldsymbol{E}} \newcommand{\BF}{\boldsymbol{F}} \newcommand{\BG}{\boldsymbol{G}} \newcommand{\BH}{\boldsymbol{H}} \newcommand{\BI}{\boldsymbol{I}} \newcommand{\BJ}{\boldsymbol{J}} \newcommand{\BK}{\boldsymbol{K}} \newcommand{\BL}{\boldsymbol{L}} \newcommand{\BM}{\boldsymbol{M}} \newcommand{\BN}{\boldsymbol{N}} \newcommand{\BO}{\boldsymbol{O}} \newcommand{\BP}{\boldsymbol{P}} \newcommand{\BQ}{\boldsymbol{Q}} \newcommand{\BR}{\boldsymbol{R}} \newcommand{\BS}{\boldsymbol{S}} \newcommand{\BT}{\boldsymbol{T}} \newcommand{\BU}{\boldsymbol{U}} \newcommand{\BV}{\boldsymbol{V}} \newcommand{\BW}{\boldsymbol{W}} \newcommand{\BX}{\boldsymbol{X}} \newcommand{\BY}{\boldsymbol{Y}} \newcommand{\BZ}{\boldsymbol{Z}} \newcommand{\Ba}{\boldsymbol{a}} \newcommand{\Bb}{\boldsymbol{b}} \newcommand{\Bc}{\boldsymbol{c}} \newcommand{\Bd}{\boldsymbol{d}} \newcommand{\Be}{\boldsymbol{e}} \newcommand{\Bf}{\boldsymbol{f}} \newcommand{\Bg}{\boldsymbol{g}} \newcommand{\Bh}{\boldsymbol{h}} \newcommand{\Bi}{\boldsymbol{i}} \newcommand{\Bj}{\boldsymbol{j}} \newcommand{\Bk}{\boldsymbol{k}} \newcommand{\Bl}{\boldsymbol{l}} \newcommand{\Bm}{\boldsymbol{m}} \newcommand{\Bn}{\boldsymbol{n}} \newcommand{\Bo}{\boldsymbol{o}} \newcommand{\Bp}{\boldsymbol{p}} \newcommand{\Bq}{\boldsymbol{q}} \newcommand{\Br}{\boldsymbol{r}} \newcommand{\Bs}{\boldsymbol{s}} \newcommand{\Bt}{\boldsymbol{t}} \newcommand{\Bu}{\boldsymbol{u}} \newcommand{\Bv}{\boldsymbol{v}} \newcommand{\Bw}{\boldsymbol{w}} \newcommand{\Bx}{\boldsymbol{x}} \newcommand{\By}{\boldsymbol{y}} \newcommand{\Bz}{\boldsymbol{z}} \newcommand{\Balpha}{\boldsymbol{\alpha}} \newcommand{\Bbeta}{\boldsymbol{\beta}} \newcommand{\Bgamma}{\boldsymbol{\gamma}} \newcommand{\Bdelta}{\boldsymbol{\delta}} \newcommand{\Beps}{\boldsymbol{\eps}} \newcommand{\Bveps}{\boldsymbol{\veps}} \newcommand{\Bzeta}{\boldsymbol{\zeta}} \newcommand{\Beta}{\boldsymbol{\eta}} \newcommand{\Btheta}{\boldsymbol{\theta}} \newcommand{\Bth}{\boldsymbol{\th}} \newcommand{\Biota}{\boldsymbol{\iota}} \newcommand{\Bkappa}{\boldsymbol{\kappa}} \newcommand{\Blambda}{\boldsymbol{\lambda}} \newcommand{\Bmu}{\boldsymbol{\mu}} \newcommand{\Bnu}{\boldsymbol{\nu}} \newcommand{\Bxi}{\boldsymbol{\xi}} \newcommand{\Bpi}{\boldsymbol{\pi}} \newcommand{\Bvpi}{\boldsymbol{\vpi}} \newcommand{\Brho}{\boldsymbol{\rho}} \newcommand{\Bsigma}{\boldsymbol{\sigma}} \newcommand{\Btau}{\boldsymbol{\tau}} \newcommand{\Bupsilon}{\boldsymbol{\upsilon}} \newcommand{\Bphi}{\boldsymbol{\phi}} \newcommand{\Bfi}{\boldsymbol{\fi}} \newcommand{\Bchi}{\boldsymbol{\chi}} \newcommand{\Bpsi}{\boldsymbol{\psi}} \newcommand{\Bom}{\boldsymbol{\om}} % .. calligraphic \newcommand{\CA}{\mathcal{A}} \newcommand{\CB}{\mathcal{B}} \newcommand{\CC}{\mathcal{C}} \newcommand{\CD}{\mathcal{D}} \newcommand{\CE}{\mathcal{E}} \newcommand{\CF}{\mathcal{F}} \newcommand{\CG}{\mathcal{G}} \newcommand{\CH}{\mathcal{H}} \newcommand{\CI}{\mathcal{I}} \newcommand{\CJ}{\mathcal{J}} \newcommand{\CK}{\mathcal{K}} \newcommand{\CL}{\mathcal{L}} \newcommand{\CM}{\mathcal{M}} \newcommand{\CN}{\mathcal{N}} \newcommand{\CO}{\mathcal{O}} \newcommand{\CP}{\mathcal{P}} \newcommand{\CQ}{\mathcal{Q}} \newcommand{\CR}{\mathcal{R}} \newcommand{\CS}{\mathcal{S}} \newcommand{\CT}{\mathcal{T}} \newcommand{\CU}{\mathcal{U}} \newcommand{\CV}{\mathcal{V}} \newcommand{\CW}{\mathcal{W}} \newcommand{\CX}{\mathcal{X}} \newcommand{\CY}{\mathcal{Y}} \newcommand{\CZ}{\mathcal{Z}} % .. typewriter \newcommand{\TA}{\mathtt{A}} \newcommand{\TB}{\mathtt{B}} \newcommand{\TC}{\mathtt{C}} \newcommand{\TD}{\mathtt{D}} \newcommand{\TE}{\mathtt{E}} \newcommand{\TF}{\mathtt{F}} \newcommand{\TG}{\mathtt{G}} \renewcommand{\TH}{\mathtt{H}} \newcommand{\TI}{\mathtt{I}} \newcommand{\TJ}{\mathtt{J}} \newcommand{\TK}{\mathtt{K}} \newcommand{\TL}{\mathtt{L}} \newcommand{\TM}{\mathtt{M}} \newcommand{\TN}{\mathtt{N}} \newcommand{\TO}{\mathtt{O}} \newcommand{\TP}{\mathtt{P}} \newcommand{\TQ}{\mathtt{Q}} \newcommand{\TR}{\mathtt{R}} \newcommand{\TS}{\mathtt{S}} \newcommand{\TT}{\mathtt{T}} \newcommand{\TU}{\mathtt{U}} \newcommand{\TV}{\mathtt{V}} \newcommand{\TW}{\mathtt{W}} \newcommand{\TX}{\mathtt{X}} \newcommand{\TY}{\mathtt{Y}} \newcommand{\TZ}{\mathtt{Z}}$

See also: p-norms

The generalized Hölder’s inequality implies that if

\[ k\cdot\frac{1}{p} = \frac{1}{q_1} + \cdots + \frac{1}{q_k} \]

(i.e. $p$ is the harmonic mean of $q_1, \ldots q_k$), then

\[ \norm{x}_p \leq \sqrt[k]{\norm{x}_{q_1} \cdots \norm{x}_{q_k}}. \]

This is true both for $p$-lengths and $p$-means/moments; indeed, one can see that the factors $n$ in the $p$-means cancel out.

#to-write another useful special case

\[ \abs{\E[\BX_1 \cdots \BX_k]} \le \norm{\BX}_{q_1} \cdots \norm{\BX}_{q_k} \]

for any $\frac{1}{q_1} + \cdots + \frac{1}{q_k} \le 1$

#to-think

  • is there a way to make the condition more intuitive?
    • $\sum_i \p{a_1}_i^{\alpha_1}\.\* \p{a_k}_i^{\alpha_k}\le\p{\sum_i a_{1,i}}^{\alpha_1} \cdots \p{\sum_i \alpha_{k,i}}^{\alpha_k}$
      • i.e. sum of geometric mean is less than geometric mean of of sums
      • i.e. $\sum_i \mathrm{G}_{\Bj \sim \alpha}\b{\p{a_\Bj}_i} \le \mathrm{G}_{\Bj \sim \alpha}\b{\sum_i\p{a_\Bj}_i}$ where $\mathrm{G}$ is “geometric expectation” operator
      • i.e. $\sum_i \exp\E_{\Bj \sim \alpha}\b{\log\p{a_\Bj}_i} \le \exp\E_{\Bj \sim \alpha}\b{\log\sum_i\p{a_\Bj}_i}$
    • also fine to replace the sequences with expectations
      • (actually this does most of the job of making this look simpler)
      • i.e. $\E\b{\BX_1^{\alpha_1}\.\* \BX_k^{\alpha_k}} \le \E\b{\BX_1}^{\alpha_1} \cdots \E\b{\BX_k}^{\alpha_k}$
      • i.e. $\E\b{\mathrm{G}_{\Bj \sim \alpha}\b{\BX_\Bj}} \le \mathrm{G}_{\Bj \sim \alpha}\b{\E\b{\BX_\Bj}}$
        • here you might just define it as a function $g_\alpha: \R^k_{\ge 0} \to \R_{\ge 0}$
        • and i’m pretty sure this function is concave!! so this is a consequence of Jensen’s (as all things are)
          • but it’s not strictly concave if you follow a ray!! hence the equality case whenever $\BX_1 \.\propto \BX_k$ (fixed ratios)
          • which makes me wonder… what does subadditivity give for the geometric mean?
            • nah, subadditivity is only over $\R$, it’s false over $\R^d$ (and indeed if it were true it would give precisely the opposite direction of Hölder’s)
        • in any case, if $\BX_j$ independent we get $\E\b{\BX_1^{\alpha_1}\.\* \BX_k^{\alpha_k}} = \E\b{\BX_1^{\alpha_1}}\cdots\E\b{\BX_k^{\alpha_k}}$ and then it’s concavity on each individual $\BX_j$ as long as each $\alpha_j$ is merely $\le 1$ (instead of summing to $\le 1$)
        • also note: if a function is concave, and you take a root (i.e. power less than one) it can only be made “more concave”
          • (this is true not just for roots but for any increasing concave function: we have $\E\b{f\p{a(t)}} \le f\p{\E\b{a(t)}} \le f\p{a\p{\E\b t}}$ as long as $a,f$ convex and $f$ increasing)
            • (or observe that $\p{f(a)}'' = f''(a)\p{a'}^2 + f'(a)a''$)
          • so that justifies why we can always make the $\alpha$’s smaller if we want
        • another note: the “geometric mean” function has the nice property that if you multiply the vector by $n$, the result is multiplied by $n$, so
          • while Jensen’s only tells you $\E\b{g_\alpha(\BX)} \le g_\alpha\p{\E\b\BX}$
          • which implies $\sum g_\alpha\p{x\P i} \le ng_\alpha\p{\f1n\sum x\P i}$
          • the $\f1n$ can be pulled out, giving $\sum g_\alpha\p{x\P i} \le g_\alpha\p{\sum x\P i}$
          • … this is definitely not something you’d get very often in 1D
            • otoh for multi-dimensional functions you get all the means (not just geometric)!!!
        • #to-write consider renaming $k$ to $d$ to make it clearer that it should be seen as a dimension?
    • with equality iff $\BX_1 \.\propto \BX_k$ (i.e. the coordinates have a fixed ratio which holds w.p. $1$, i.e. $\BX$ is restricted to a ray)
      • and iff $a_1 \.\propto a_k$ (the sequences are proportional)
  • does it suggest actually flipping the meaning of $\norm{\*}_p$??
    • nah you’re out of your mind buddy :D
  • when dealing with expectations, fine if $\sum \alpha_i < 1$, and when dealing with sums, fine if $\sum \alpha_i > 1$
    • the former is fine because it’s still concave (but now strictly), which means that we must now have $\BX$ be completely constant
    • and the latter i don’t know how to get other than by doing a step of $p$-distance inequalities??
      • and indeed the equality case is completely different: you have equality iff $\forall i:a_1\P i \.=a_k\P i$, i.e. the sequences are identical
  • #to-write actually refactor this into a single note called “mean convexity” which synthesizes both
    • Hölder’s
      • i.e. Jensen’s applied to the concavity of the geometric mean
      • aka “geometric concavity” / “multiplicative concavity”?
    • Minkowski
      • i.e. Jensen’s applied to the convexity of the $p$-norms with $p \ge 1$
      • aka “triangle inequality” / “path inequality”?
        • e.g. $\norm{\int v(t) \d t}_p \le \int \norm{v(t)}_p\d t$ in the limit of long sequences
      • (with a note that if you restrict yourself to positive values you can get the concave version for $p\le 1$)
    • all of these have the property that they apply to both sums and expectations (since you can pull out constant factors)
      • note: there is an “impure” version of the path inequality which instead looks at $\norm{\*}_p^p$, which is still convex, but no longer a norm, and you need to adjust for the sequence length
        • i.e. $\norm{\f{\sum x\P i}n}_p^p \le \f{\sum\norm{x\P i}_p^p}n \so \norm{\sum x\P i}_p^p \le n^{p-1}\sum\norm{x\P i}_p^p$
        • in particular, for $p=2$, get $\norm{\sum x\P i}_2^2 \le n\sum\norm{x\P i}_2^2$
          • e.g. $\norm{x+y}_2^2 \le 2\p{\norm{x}_2^2+\norm{y}_2^2}$
    • also interesting how we tend to want to pull geometric means/multiplications outside of sums/expectations but push norms inside, which means that in both cases we get an upper bound
      • motto: geometric means out, norms in
  • note: seems like the proof of the small read version is actually quite easy from the normal version, see 2024-10-11 meeting notes (ultimately trick very similar to shearer)

Entropic proof

warning!! these $\BX$s are not the same as the $\BX$s above; should almost definitely rename them

  • warmup: C-S
    • let $\BX_i \sim \CU\p{[a_i]}$, $\BY_i \sim \CU\p{\b{b_i}}$
    • claim: $2\H\b{\BX_\Bi,\BY_\Bi,\Bi} = \H\b{\BX_\Bi,\BX'_\Bi,\Bi} + \H\b{\BY_\Bi,\BY'_\Bi,\Bi}$
    • then upper bound the latter
  • symmetric Hölder
    • let $\BX_{r,i} \sim \CU\p{\b{a_{r,i}}}$
    • claim: $k\H\b{\BX_{1,\Bi}\.,\BX_{k,\Bi},\Bi} = \H\b{\BX\P1_{1,\Bi}\.,\BX\P k_{1,\Bi},\Bi} \.+ \H\b{\BY\P1_{k,\Bi}\.,\BY\P k_{k,\Bi},\Bi}$
    • the “width” and “length” need to match because we need to have the same number of $\Bi$s on either side
    • 2-variable Hölder: have a boolean $\Bb$ and let $\BZ_{\Bb,\Bi} \ce$ X_i or Y_i depending on b
    • claim: $\H\bco{\BZ_{\Bb,\Bi},\Bi}\Bb = \H\bco{\BZ_{\Bb,\Bi},\BZ'_{\Bb,\Bi},\Bi}\Bb$?? uhh
      • even $\H\bco{\BZ_{\Bb,\Bi},\Bi}\Bb$ seems like it’s off…
      • $\H\bco{\BZ_{\Bb,\Bi},\Bi}\Bb = \H\b\Bi + \E\b{\H\bco{\BZ_{\Bb,\Bi}}{\Bb,\Bi}}$
      • … yeah somehow we’d want them to count as several objects
      • … on the LHS you could make that happen by only “revealing” those that are active right now? actually no
    • okay i think it’s definitely better to just do the limit thing (and possibly the only option if you want to use the entropy of an actual distribution)

Hölder switcheroo

This inequality allows you to “propagate sparsity up” and “propagate spreadness/reasonableness down”.

Indeed, let’s take the $k=2$ case, and pick $q_1 < p < q_2$ such that $\frac{2}{p} = \frac{1}{q_1}+\frac{1}{q_2}$. Then we can rewrite Hölder’s inequality as

\[ \norm{x}_p \leq \sqrt{\norm{x}_{q_1}\norm{x}_{q_2}} \Leftrightarrow \frac{\norm{x}_p}{\norm{x}_{q_2}} \leq \frac{\norm{x}_{q_1}}{\norm{x}_p}. \]

So if the ratio $\frac{\norm{x}_{q_1}}{\norm{x}_{p}}$ is small (which we’ve seen means $x$ is sparse in $p$-norm), then the ratio $\frac{\norm{x}_p}{\norm{x}_{q_2}}$ is also small (which we’ve seen means $x$ is sparse in $q_2$-norm).[^4]

Similarly, for moments, we can write

\[ \norm{\BX}_p \leq \sqrt{\norm{\BX}_{q_1}\norm{\BX}_{q_2}} \Leftrightarrow \frac{\norm{\BX}_p}{\norm{\BX}_{q_1}} \leq \frac{\norm{\BX}_{q_2}}{\norm{\BX}_p}. \]

So if the ratio $\frac{\norm{\BX}_{q_2}}{\norm{\BX}_p}$ is small (which we’ve seen means $\BX$ is reasonable in $p$-norm), then the ratio $\frac{\norm{\BX}_p}{\norm{\BX}_{q_1}}$ is also small (which means $\BX$ is reasonable in $q_1$-norm).[^5]

Valiant-Valiant inequality prover

A wide range of inequalities, including the $p$-length inequalities and Hölder’s inequality on several sequences of numbers can be automatically proved or disproved by Valiant and Valiant’s inequality prover.1

  1. Gregory Valiant and Paul Valiant, ”An automatic inequality prover and instance optimal identity testing”.