$\require{mathtools} \newcommand{\nc}{\newcommand} % %%% GENERIC MATH %%% % % Environments \newcommand{\al}[1]{\begin{align}#1\end{align}} % need this for \tag{} to work \renewcommand{\r}{\mathrm} \renewcommand{\t}{\textrm} % % Delimiters % (I needed to create my own because the MathJax version of \DeclarePairedDelimiter doesn't have \mathopen{} and that messes up the spacing) % .. one-part \newcommand{\p}[1]{\mathopen{}\left( #1 \right)} \renewcommand{\P}[1]{^{\p{#1}}} \renewcommand{\b}[1]{\mathopen{}\left[ #1 \right]} \newcommand{\set}[1]{\mathopen{}\left\{ #1 \right\}} \newcommand{\abs}[1]{\mathopen{}\left\lvert #1 \right\rvert} \newcommand{\floor}[1]{\mathopen{}\left\lfloor #1 \right\rfloor} \newcommand{\ceil}[1]{\mathopen{}\left\lceil #1 \right\rceil} \newcommand{\inner}[1]{\mathopen{}\left\langle #1 \right\rangle} \newcommand{\norm}[1]{\mathopen{}\left\lVert #1 \strut \right\rVert} \newcommand{\frob}[1]{\norm{#1}_\mathrm{F}} \newcommand{\mix}[1]{\mathopen{}\left\lfloor #1 \right\rceil} %% .. two-part \newcommand{\inco}[2]{#1 \mathop{}\middle|\mathop{} #2} \newcommand{\co}[2]{ {\left.\inco{#1}{#2}\right.}} \newcommand{\cond}{\co} % deprecated \newcommand{\pco}[2]{\p{\inco{#1}{#2}}} \newcommand{\bco}[2]{\b{\inco{#1}{#2}}} \newcommand{\setco}[2]{\set{\inco{#1}{#2}}} \newcommand{\at}[2]{ {\left.#1\strut\right|_{#2}}} \newcommand{\pat}[2]{\p{\at{#1}{#2}}} \newcommand{\bat}[2]{\b{\at{#1}{#2}}} \newcommand{\para}[2]{#1\strut \mathop{}\middle\|\mathop{} #2} \newcommand{\ppa}[2]{\p{\para{#1}{#2}}} \newcommand{\pff}[2]{\p{\ff{#1}{#2}}} \newcommand{\bff}[2]{\b{\ff{#1}{#2}}} \newcommand{\bffco}[4]{\bff{\cond{#1}{#2}}{\cond{#3}{#4}}} \newcommand{\sm}[1]{\p{\begin{smallmatrix}#1\end{smallmatrix}}} % % Greek \newcommand{\eps}{\epsilon} \newcommand{\veps}{\varepsilon} \newcommand{\vpi}{\varpi} % the following cause issues with real LaTeX tho :/ maybe consider naming it \fhi instead? \let\fi\phi % because it looks like an f \let\phi\varphi % because it looks like a p \renewcommand{\th}{\theta} \newcommand{\Th}{\Theta} \newcommand{\om}{\omega} \newcommand{\Om}{\Omega} % % Miscellaneous \newcommand{\LHS}{\mathrm{LHS}} \newcommand{\RHS}{\mathrm{RHS}} \DeclareMathOperator{\cst}{const} % .. operators \DeclareMathOperator{\poly}{poly} \DeclareMathOperator{\polylog}{polylog} \DeclareMathOperator{\quasipoly}{quasipoly} \DeclareMathOperator{\negl}{negl} \DeclareMathOperator*{\argmin}{arg\thinspace min} \DeclareMathOperator*{\argmax}{arg\thinspace max} % .. functions \DeclareMathOperator{\id}{id} \DeclareMathOperator{\sign}{sign} \DeclareMathOperator{\err}{err} \DeclareMathOperator{\ReLU}{ReLU} % .. analysis \let\d\undefined \newcommand{\d}{\operatorname{d}\mathopen{}} \newcommand{\dd}[1]{\operatorname{d}^{#1}\mathopen{}} \newcommand{\df}[2]{ {\f{\d #1}{\d #2}}} \newcommand{\ds}[2]{ {\sl{\d #1}{\d #2}}} \newcommand{\ddf}[3]{ {\f{\dd{#1} #2}{\p{\d #3}^{#1}}}} \newcommand{\dds}[3]{ {\sl{\dd{#1} #2}{\p{\d #3}^{#1}}}} \renewcommand{\part}{\partial} \newcommand{\partf}[2]{\f{\part #1}{\part #2}} \newcommand{\parts}[2]{\sl{\part #1}{\part #2}} \newcommand{\grad}[1]{\mathop{\nabla\!_{#1}}} % .. sets \newcommand{\es}{\emptyset} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\zo}{\set{0,1}} \newcommand{\pmo}{\set{\pm 1}} \newcommand{\zpmo}{\set{0,\pm 1}} % .... set operations \newcommand{\sse}{\subseteq} \newcommand{\out}{\not\in} \newcommand{\minus}{\setminus} \newcommand{\inc}[1]{\union \set{#1}} % "including" \newcommand{\exc}[1]{\setminus \set{#1}} % "except" % .. over and under \renewcommand{\ss}[1]{_{\substack{#1}}} \newcommand{\OB}{\overbrace} \newcommand{\ob}[2]{\OB{#1}^\t{#2}} \newcommand{\UB}{\underbrace} \newcommand{\ub}[2]{\UB{#1}_\t{#2}} \newcommand{\ol}{\overline} \newcommand{\tld}{\widetilde} % deprecated \renewcommand{\~}{\widetilde} \newcommand{\HAT}{\widehat} % deprecated \renewcommand{\^}{\widehat} \newcommand{\rt}[1]{ {\sqrt{#1}}} \newcommand{\for}[2]{_{#1=1}^{#2}} \newcommand{\sfor}{\sum\for} \newcommand{\pfor}{\prod\for} % .... two-part \newcommand{\f}{\frac} \renewcommand{\sl}[2]{#1 /\mathopen{}#2} \newcommand{\ff}[2]{\mathchoice{\begin{smallmatrix}\displaystyle\vphantom{\p{#1}}#1\\[-0.05em]\hline\\[-0.05em]\hline\displaystyle\vphantom{\p{#2}}#2\end{smallmatrix}}{\begin{smallmatrix}\vphantom{\p{#1}}#1\\[-0.1em]\hline\\[-0.1em]\hline\vphantom{\p{#2}}#2\end{smallmatrix}}{\begin{smallmatrix}\vphantom{\p{#1}}#1\\[-0.1em]\hline\\[-0.1em]\hline\vphantom{\p{#2}}#2\end{smallmatrix}}{\begin{smallmatrix}\vphantom{\p{#1}}#1\\[-0.1em]\hline\\[-0.1em]\hline\vphantom{\p{#2}}#2\end{smallmatrix}}} % .. arrows \newcommand{\from}{\leftarrow} \DeclareMathOperator*{\<}{\!\;\longleftarrow\;\!} \let\>\undefined \DeclareMathOperator*{\>}{\!\;\longrightarrow\;\!} \let\-\undefined \DeclareMathOperator*{\-}{\!\;\longleftrightarrow\;\!} \newcommand{\so}{\implies} % .. operators and relations \renewcommand{\*}{\cdot} \newcommand{\x}{\times} \newcommand{\sr}{\stackrel} \newcommand{\ce}{\coloneqq} \newcommand{\ec}{\eqqcolon} \newcommand{\ap}{\approx} \newcommand{\ls}{\lesssim} \newcommand{\gs}{\gtrsim} % .. punctuation and spacing \renewcommand{\.}[1]{#1\dots#1} \newcommand{\ts}{\thinspace} \newcommand{\q}{\quad} \newcommand{\qq}{\qquad} % % Levels of closeness \newcommand{\scirc}[1]{\sr{\circ}{#1}} \newcommand{\sdot}[1]{\sr{.}{#1}} \newcommand{\slog}[1]{\sr{\log}{#1}} \newcommand{\createClosenessLevels}[7]{ \newcommand{#2}{\mathrel{(#1)}} \newcommand{#3}{\mathrel{#1}} \newcommand{#4}{\mathrel{#1\!\!#1}} \newcommand{#5}{\mathrel{#1\!\!#1\!\!#1}} \newcommand{#6}{\mathrel{(\sdot{#1})}} \newcommand{#7}{\mathrel{(\slog{#1})}} } \let\lt\undefined \let\gt\undefined % .. vanilla versions (is it within a constant?) \newcommand{\ez}{\scirc=} \newcommand{\eq}{\simeq} \newcommand{\eqq}{\mathrel{\eq\!\!\eq}} \newcommand{\eqqq}{\mathrel{\eq\!\!\eq\!\!\eq}} \newcommand{\lez}{\scirc\le} \renewcommand{\lq}{\preceq} \newcommand{\lqq}{\mathrel{\lq\!\!\lq}} \newcommand{\lqqq}{\mathrel{\lq\!\!\lq\!\!\lq}} \newcommand{\gez}{\scirc\ge} \newcommand{\gq}{\succeq} \newcommand{\gqq}{\mathrel{\gq\!\!\gq}} \newcommand{\gqqq}{\mathrel{\gq\!\!\gq\!\!\gq}} \newcommand{\lz}{\scirc<} \newcommand{\lt}{\prec} \newcommand{\ltt}{\mathrel{\lt\!\!\lt}} \newcommand{\lttt}{\mathrel{\lt\!\!\lt\!\!\lt}} \newcommand{\gz}{\scirc>} \newcommand{\gt}{\succ} \newcommand{\gtt}{\mathrel{\gt\!\!\gt}} \newcommand{\gttt}{\mathrel{\gt\!\!\gt\!\!\gt}} % .. dotted versions (is it equal in the limit?) \newcommand{\ed}{\sdot=} \newcommand{\eqd}{\sdot\eq} \newcommand{\eqqd}{\sdot\eqq} \newcommand{\eqqqd}{\sdot\eqqq} \newcommand{\led}{\sdot\le} \newcommand{\lqd}{\sdot\lq} \newcommand{\lqqd}{\sdot\lqq} \newcommand{\lqqqd}{\sdot\lqqq} \newcommand{\ged}{\sdot\ge} \newcommand{\gqd}{\sdot\gq} \newcommand{\gqqd}{\sdot\gqq} \newcommand{\gqqqd}{\sdot\gqqq} \newcommand{\ld}{\sdot<} \newcommand{\ltd}{\sdot\lt} \newcommand{\lttd}{\sdot\ltt} \newcommand{\ltttd}{\sdot\lttt} \newcommand{\gd}{\sdot>} \newcommand{\gtd}{\sdot\gt} \newcommand{\gttd}{\sdot\gtt} \newcommand{\gtttd}{\sdot\gttt} % .. log versions (is it equal up to log?) \newcommand{\elog}{\slog=} \newcommand{\eqlog}{\slog\eq} \newcommand{\eqqlog}{\slog\eqq} \newcommand{\eqqqlog}{\slog\eqqq} \newcommand{\lelog}{\slog\le} \newcommand{\lqlog}{\slog\lq} \newcommand{\lqqlog}{\slog\lqq} \newcommand{\lqqqlog}{\slog\lqqq} \newcommand{\gelog}{\slog\ge} \newcommand{\gqlog}{\slog\gq} \newcommand{\gqqlog}{\slog\gqq} \newcommand{\gqqqlog}{\slog\gqqq} \newcommand{\llog}{\slog<} \newcommand{\ltlog}{\slog\lt} \newcommand{\lttlog}{\slog\ltt} \newcommand{\ltttlog}{\slog\lttt} \newcommand{\glog}{\slog>} \newcommand{\gtlog}{\slog\gt} \newcommand{\gttlog}{\slog\gtt} \newcommand{\gtttlog}{\slog\gttt} % % %%% SPECIALIZED MATH %%% % % Logic and bit operations \newcommand{\fa}{\forall} \newcommand{\ex}{\exists} \renewcommand{\and}{\wedge} \newcommand{\AND}{\bigwedge} \renewcommand{\or}{\vee} \newcommand{\OR}{\bigvee} \newcommand{\xor}{\oplus} \newcommand{\XOR}{\bigoplus} \newcommand{\union}{\cup} \newcommand{\inter}{\cap} \newcommand{\UNION}{\bigcup} \newcommand{\INTER}{\bigcap} \newcommand{\comp}{\overline} \newcommand{\true}{\r{true}} \newcommand{\false}{\r{false}} \newcommand{\tf}{\set{\true,\false}} \DeclareMathOperator{\One}{\mathbb{1}} \DeclareMathOperator{\1}{\mathbb{1}} % use \mathbbm instead if using real LaTeX \DeclareMathOperator{\LSB}{LSB} % % Linear algebra \newcommand{\spn}{\mathrm{span}} % do NOT use \span because it causes misery with amsmath \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\dom}{dom} \DeclareMathOperator{\Img}{Im} \newcommand{\transp}{\mathsf{T}} \newcommand{\T}{^\transp} % .. named tensors \newcommand{\namedtensorstrut}{\vphantom{fg}} % milder than \mathstrut \newcommand{\name}[1]{\mathsf{\namedtensorstrut #1}} \newcommand{\nbin}[2]{\mathbin{\underset{\substack{#1}}{\namedtensorstrut #2}}} \newcommand{\ndot}[1]{\nbin{#1}{\odot}} \newcommand{\ncat}[1]{\nbin{#1}{\oplus}} \newcommand{\nsum}[1]{\sum\limits_{\substack{#1}}} \newcommand{\nfun}[2]{\mathop{\underset{\substack{#1}}{\namedtensorstrut\mathrm{#2}}}} \newcommand{\ndef}[2]{\newcommand{#1}{\name{#2}}} \newcommand{\nt}[1]{^{\transp(#1)}} % % Probability \newcommand{\tri}{\triangle} \newcommand{\Normal}{\mathcal{N}} % .. operators \DeclareMathOperator{\supp}{supp} \let\Pr\undefined \DeclareMathOperator*{\Pr}{Pr} \DeclareMathOperator*{\G}{\mathbb{G}} \DeclareMathOperator*{\Odds}{Od} \DeclareMathOperator*{\E}{E} \DeclareMathOperator*{\Var}{Var} \DeclareMathOperator*{\Cov}{Cov} \DeclareMathOperator*{\K}{K} \DeclareMathOperator*{\corr}{corr} \DeclareMathOperator*{\median}{median} \DeclareMathOperator*{\maj}{maj} % ... information theory \let\H\undefined \DeclareMathOperator*{\H}{H} \DeclareMathOperator*{\I}{I} \DeclareMathOperator*{\D}{D} \DeclareMathOperator*{\KL}{KL} % .. other divergences \newcommand{\dTV}{d_{\mathrm{TV}}} \newcommand{\dHel}{d_{\mathrm{Hel}}} \newcommand{\dJS}{d_{\mathrm{JS}}} % %%% SPECIALIZED COMPUTER SCIENCE %%% % % Complexity classes % .. classical \newcommand{\Poly}{\mathsf{P}} \newcommand{\NP}{\mathsf{NP}} \newcommand{\PH}{\mathsf{PH}} \newcommand{\PSPACE}{\mathsf{PSPACE}} \renewcommand{\L}{\mathsf{L}} % .. probabilistic \newcommand{\formost}{\mathsf{Я}} \newcommand{\RP}{\mathsf{RP}} \newcommand{\BPP}{\mathsf{BPP}} \newcommand{\MA}{\mathsf{MA}} \newcommand{\AM}{\mathsf{AM}} \newcommand{\IP}{\mathsf{IP}} \newcommand{\RL}{\mathsf{RL}} % .. circuits \newcommand{\NC}{\mathsf{NC}} \newcommand{\AC}{\mathsf{AC}} \newcommand{\ACC}{\mathsf{ACC}} \newcommand{\ThrC}{\mathsf{TC}} \newcommand{\Ppoly}{\mathsf{P}/\poly} \newcommand{\Lpoly}{\mathsf{L}/\poly} % .. resources \newcommand{\TIME}{\mathsf{TIME}} \newcommand{\SPACE}{\mathsf{SPACE}} \newcommand{\TISP}{\mathsf{TISP}} \newcommand{\SIZE}{\mathsf{SIZE}} % .. keywords \newcommand{\coclass}{\mathsf{co}} \newcommand{\Prom}{\mathsf{Promise}} % % Boolean analysis \newcommand{\harpoon}{\!\upharpoonright\!} \newcommand{\rr}[2]{#1\harpoon_{#2}} \newcommand{\Fou}[1]{\widehat{#1}} \DeclareMathOperator{\Ind}{\mathrm{Ind}} \DeclareMathOperator{\Inf}{\mathrm{Inf}} \newcommand{\Der}[1]{\operatorname{D}_{#1}\mathopen{}} \newcommand{\Exp}[1]{\operatorname{E}_{#1}\mathopen{}} \DeclareMathOperator{\Stab}{\mathrm{Stab}} \DeclareMathOperator{\Tau}{T} \DeclareMathOperator{\sens}{\mathrm{s}} \DeclareMathOperator{\bsens}{\mathrm{bs}} \DeclareMathOperator{\fbsens}{\mathrm{fbs}} \DeclareMathOperator{\Cert}{\mathrm{C}} \DeclareMathOperator{\DT}{\mathrm{DT}} \DeclareMathOperator{\CDT}{\mathrm{CDT}} % canonical \DeclareMathOperator{\ECDT}{\mathrm{ECDT}} \DeclareMathOperator{\CDTv}{\mathrm{CDT_{vars}}} \DeclareMathOperator{\ECDTv}{\mathrm{ECDT_{vars}}} \DeclareMathOperator{\CDTt}{\mathrm{CDT_{terms}}} \DeclareMathOperator{\ECDTt}{\mathrm{ECDT_{terms}}} \DeclareMathOperator{\CDTw}{\mathrm{CDT_{weighted}}} \DeclareMathOperator{\ECDTw}{\mathrm{ECDT_{weighted}}} \DeclareMathOperator{\AvgDT}{\mathrm{AvgDT}} \DeclareMathOperator{\PDT}{\mathrm{PDT}} % partial decision tree \DeclareMathOperator{\DTsize}{\mathrm{DT_{size}}} \DeclareMathOperator{\W}{\mathbf{W}} % .. functions (small caps sadly doesn't work) \DeclareMathOperator{\Par}{\mathrm{Par}} \DeclareMathOperator{\Maj}{\mathrm{Maj}} \DeclareMathOperator{\HW}{\mathrm{HW}} \DeclareMathOperator{\Thr}{\mathrm{Thr}} \DeclareMathOperator{\Tribes}{\mathrm{Tribes}} \DeclareMathOperator{\RotTribes}{\mathrm{RotTribes}} \DeclareMathOperator{\CycleRun}{\mathrm{CycleRun}} \DeclareMathOperator{\SAT}{\mathrm{SAT}} \DeclareMathOperator{\UniqueSAT}{\mathrm{UniqueSAT}} % % Dynamic optimality \newcommand{\OPT}{\mathsf{OPT}} \newcommand{\Alt}{\mathsf{Alt}} \newcommand{\Funnel}{\mathsf{Funnel}} % % Alignment \DeclareMathOperator{\Amp}{\mathrm{Amp}} % %%% TYPESETTING %%% % % In "text" \newcommand{\heart}{\heartsuit} \newcommand{\nth}{^\t{th}} \newcommand{\degree}{^\circ} \newcommand{\qu}[1]{\text{``}#1\text{''}} % remove these last two if using real LaTeX \newcommand{\qed}{\blacksquare} \newcommand{\qedhere}{\tag*{$\blacksquare$}} % % Fonts % .. bold \newcommand{\BA}{\boldsymbol{A}} \newcommand{\BB}{\boldsymbol{B}} \newcommand{\BC}{\boldsymbol{C}} \newcommand{\BD}{\boldsymbol{D}} \newcommand{\BE}{\boldsymbol{E}} \newcommand{\BF}{\boldsymbol{F}} \newcommand{\BG}{\boldsymbol{G}} \newcommand{\BH}{\boldsymbol{H}} \newcommand{\BI}{\boldsymbol{I}} \newcommand{\BJ}{\boldsymbol{J}} \newcommand{\BK}{\boldsymbol{K}} \newcommand{\BL}{\boldsymbol{L}} \newcommand{\BM}{\boldsymbol{M}} \newcommand{\BN}{\boldsymbol{N}} \newcommand{\BO}{\boldsymbol{O}} \newcommand{\BP}{\boldsymbol{P}} \newcommand{\BQ}{\boldsymbol{Q}} \newcommand{\BR}{\boldsymbol{R}} \newcommand{\BS}{\boldsymbol{S}} \newcommand{\BT}{\boldsymbol{T}} \newcommand{\BU}{\boldsymbol{U}} \newcommand{\BV}{\boldsymbol{V}} \newcommand{\BW}{\boldsymbol{W}} \newcommand{\BX}{\boldsymbol{X}} \newcommand{\BY}{\boldsymbol{Y}} \newcommand{\BZ}{\boldsymbol{Z}} \newcommand{\Ba}{\boldsymbol{a}} \newcommand{\Bb}{\boldsymbol{b}} \newcommand{\Bc}{\boldsymbol{c}} \newcommand{\Bd}{\boldsymbol{d}} \newcommand{\Be}{\boldsymbol{e}} \newcommand{\Bf}{\boldsymbol{f}} \newcommand{\Bg}{\boldsymbol{g}} \newcommand{\Bh}{\boldsymbol{h}} \newcommand{\Bi}{\boldsymbol{i}} \newcommand{\Bj}{\boldsymbol{j}} \newcommand{\Bk}{\boldsymbol{k}} \newcommand{\Bl}{\boldsymbol{l}} \newcommand{\Bm}{\boldsymbol{m}} \newcommand{\Bn}{\boldsymbol{n}} \newcommand{\Bo}{\boldsymbol{o}} \newcommand{\Bp}{\boldsymbol{p}} \newcommand{\Bq}{\boldsymbol{q}} \newcommand{\Br}{\boldsymbol{r}} \newcommand{\Bs}{\boldsymbol{s}} \newcommand{\Bt}{\boldsymbol{t}} \newcommand{\Bu}{\boldsymbol{u}} \newcommand{\Bv}{\boldsymbol{v}} \newcommand{\Bw}{\boldsymbol{w}} \newcommand{\Bx}{\boldsymbol{x}} \newcommand{\By}{\boldsymbol{y}} \newcommand{\Bz}{\boldsymbol{z}} \newcommand{\Balpha}{\boldsymbol{\alpha}} \newcommand{\Bbeta}{\boldsymbol{\beta}} \newcommand{\Bgamma}{\boldsymbol{\gamma}} \newcommand{\Bdelta}{\boldsymbol{\delta}} \newcommand{\Beps}{\boldsymbol{\eps}} \newcommand{\Bveps}{\boldsymbol{\veps}} \newcommand{\Bzeta}{\boldsymbol{\zeta}} \newcommand{\Beta}{\boldsymbol{\eta}} \newcommand{\Btheta}{\boldsymbol{\theta}} \newcommand{\Bth}{\boldsymbol{\th}} \newcommand{\Biota}{\boldsymbol{\iota}} \newcommand{\Bkappa}{\boldsymbol{\kappa}} \newcommand{\Blambda}{\boldsymbol{\lambda}} \newcommand{\Bmu}{\boldsymbol{\mu}} \newcommand{\Bnu}{\boldsymbol{\nu}} \newcommand{\Bxi}{\boldsymbol{\xi}} \newcommand{\Bpi}{\boldsymbol{\pi}} \newcommand{\Bvpi}{\boldsymbol{\vpi}} \newcommand{\Brho}{\boldsymbol{\rho}} \newcommand{\Bsigma}{\boldsymbol{\sigma}} \newcommand{\Btau}{\boldsymbol{\tau}} \newcommand{\Bupsilon}{\boldsymbol{\upsilon}} \newcommand{\Bphi}{\boldsymbol{\phi}} \newcommand{\Bfi}{\boldsymbol{\fi}} \newcommand{\Bchi}{\boldsymbol{\chi}} \newcommand{\Bpsi}{\boldsymbol{\psi}} \newcommand{\Bom}{\boldsymbol{\om}} % .. calligraphic \newcommand{\CA}{\mathcal{A}} \newcommand{\CB}{\mathcal{B}} \newcommand{\CC}{\mathcal{C}} \newcommand{\CD}{\mathcal{D}} \newcommand{\CE}{\mathcal{E}} \newcommand{\CF}{\mathcal{F}} \newcommand{\CG}{\mathcal{G}} \newcommand{\CH}{\mathcal{H}} \newcommand{\CI}{\mathcal{I}} \newcommand{\CJ}{\mathcal{J}} \newcommand{\CK}{\mathcal{K}} \newcommand{\CL}{\mathcal{L}} \newcommand{\CM}{\mathcal{M}} \newcommand{\CN}{\mathcal{N}} \newcommand{\CO}{\mathcal{O}} \newcommand{\CP}{\mathcal{P}} \newcommand{\CQ}{\mathcal{Q}} \newcommand{\CR}{\mathcal{R}} \newcommand{\CS}{\mathcal{S}} \newcommand{\CT}{\mathcal{T}} \newcommand{\CU}{\mathcal{U}} \newcommand{\CV}{\mathcal{V}} \newcommand{\CW}{\mathcal{W}} \newcommand{\CX}{\mathcal{X}} \newcommand{\CY}{\mathcal{Y}} \newcommand{\CZ}{\mathcal{Z}} % .. typewriter \newcommand{\TA}{\mathtt{A}} \newcommand{\TB}{\mathtt{B}} \newcommand{\TC}{\mathtt{C}} \newcommand{\TD}{\mathtt{D}} \newcommand{\TE}{\mathtt{E}} \newcommand{\TF}{\mathtt{F}} \newcommand{\TG}{\mathtt{G}} \renewcommand{\TH}{\mathtt{H}} \newcommand{\TI}{\mathtt{I}} \newcommand{\TJ}{\mathtt{J}} \newcommand{\TK}{\mathtt{K}} \newcommand{\TL}{\mathtt{L}} \newcommand{\TM}{\mathtt{M}} \newcommand{\TN}{\mathtt{N}} \newcommand{\TO}{\mathtt{O}} \newcommand{\TP}{\mathtt{P}} \newcommand{\TQ}{\mathtt{Q}} \newcommand{\TR}{\mathtt{R}} \newcommand{\TS}{\mathtt{S}} \newcommand{\TT}{\mathtt{T}} \newcommand{\TU}{\mathtt{U}} \newcommand{\TV}{\mathtt{V}} \newcommand{\TW}{\mathtt{W}} \newcommand{\TX}{\mathtt{X}} \newcommand{\TY}{\mathtt{Y}} \newcommand{\TZ}{\mathtt{Z}}$

Parts of this note are based on “Autoencoders, Minimum Description Length and Helmholtz Free Energy” by Geoffrey E. Hinton and Richard S. Zemel.

Approximating the posterior

Suppose we make some observations $x$ and want to update our belief about the underlying latents $z$. The perfect way to update is given by the posterior

\[ p\pco{z}{x} \propto p(x,z) \implies p\pco z x = \f{\ob{p(z)}{prior}\ob{p\pco{x}{z}}{likelihood}}{\ub{p(x)}{evidence}}. \]

However, this expression (and in particular the $p(\Bx)$ part) might be costly to compute, or costly to sample from, so in some cases it’s convenient to represent an approximate posterior $q(z)$ given by minimizing the information divergence

\[ \al{ \D\pff{q(\Bz)}{p\pco\Bz x} &= \E_{q(\Bz)}\b{\log \f{q(\Bz)}{\f{p(\Bz)p\pco x\Bz}{p(x)}}}\\ &= \E_{q(\Bz)}\b{\log \f{q(\Bz)}{p(\Bz)p\pco x\Bz}} - \log \f1{p(x)}\tag 1 } \]

over some restricted family of possible distributions $q$.

Fortunately, the $p(x)$ part doesn’t depend on $q$, so for the purposes of minimizing the divergence, we can drop it and define the loss of $q$ as

\[ \al{ \CL(q) &\ce \E_{q(\Bz)}\b{\log \f{q(\Bz)}{p(\Bz)p\pco x\Bz}}\\ &= \ub{\D\pff{q(\Bz)}{p(\Bz)}}{minimize divergence from prior} + \ub{\E_{q(\Bz)}\b{\log \f1{p\pco x\Bz}}}{maximize likelihood}. } \]

Surprise upper bound

On the other hand, since the information divergence is nonnegative, any $q$ gives a lower bound on the probability $p(x)$ of seeing this observation (which is why it’s sometimes called the “evidence lower bound”):

\[ \al{ (1) \so{}& \log \f1{p\p x} \le \CL(q)\tag{surprise upper bound}\\ \iff{}& p\p x \ge \exp\p{-\CL(q)}\tag{evidence lower bound}. } \]

In that sense, the smaller the loss $\CL(q)$, the better $q$ “explains” the observation $x$. In fact, it provides a plausible story for how this value of $x$ came to be. That story has two parts, corresponding to the two parts of the loss:

  • $\D\pff{q(\Bz)}{p(\Bz)}$ being small means that the values of $z$ produced by $q$ weren’t too unlikely under the prior $p$;
  • $\E_{q(\Bz)}\b{\log \f1{p\pco x\Bz}}$ being small means that given those values of $z$, the observation $x$ wasn’t too unlikely on average.

Encoding cost and the “bits-back” argument

As it turns out, the loss $\CL(q)$ can also be interpreted as a cost (in bits) for encoding $x$ using a latent $\Bz$ drawn from $q$.

The coding theorem tells us that if we fix reference distribution $r$, then we can encode value $x$ using $\le \log \f{1}{r(x)} + o(1)$ bits (in the long run, in an amortized sense). Intuitively, this suggests that encoding $x$ using some value $z$ would cost about

\[ \ub{\log \f{1}{p(z)}}{cost to encode $z$} + \ub{\log \f{1}{p\pco{x}{z}}}{cost to encode $x$ given $z$} \]

bits, which means that if we do this with a random $\Bz \sim q(\Bz)$, we get an average cost of

\[ \E_{q(\Bz)}\b{\log \f{1}{p(\Bz)p\pco x\Bz}} = \E_{q(\Bz)}\b{\log \f{1}{p(\Bz,x)}} \]

bits, which is $\H\p{q(\Bz)}$ more than the loss $\CL(q)$. But in fact, naively there is no gains in randomizing $z$, as opposed to just using the value that maximizes $p(z)p\pco x z$.

However, if we do draw $z$ at random from $q$, then in addition to communicating $x$ to the decoder, we’re also communicates the randomness that was used in generating $z$. Assuming the decoder knows $q$, they can recover $\log \f{1}{q(z)}-o(1)$ bits of randomness from the value of $z$ (again, in an amortized sense), which the encoder can either use for describing the next $z$, or for something else entirely.1 In either case, to the extent that further randomness is useful for encoding stuff, it seems “fair” to deduct this from the encoding cost, giving an average cost of

\[ \al{ \E_{q(\Bz)}\b{\log \f{1}{p(\Bz,x)}} - \E_{q(\Bz)}\b{\log \f{1}{q(\Bz)}} &= \ub{\E_{q(\Bz)}\b{\log \f{1}{p(\Bz,x)}}}{cost of encoding $\Bz$ and $x$} - \ub{\H\p{q(\Bz)}}{``cash back'' for the random bits in $\Bz$}\\ &= \CL(q). } \]

Training generative models

Sometimes, we don’t care about the posterior or about a lower bound on $p(x)$ for its own sake. For example, if we have a generative model $p_\theta\p z p_\theta\pco x z$ parametrized by $\theta$, we might want to pick the value $\theta$ which maximizes the likelihood of a sample $x_1\.,x_m$

\[ p_\theta\p{x_1\.,x_m} = \prod_{i=1}^m p_\th\p{x_i} = \prod_{i=1}^m\E_{p_\theta\p{\Bz}}\b{p_\theta\pco{x_i}{\Bz}}, \]

or equivalently, the value $\theta$ which minimizes the total surprise of observing the sample $x_1 \., x_m$. When these integrals are intractable, a reasonable proxy is to instead minimize an upper bound on the total surprise

\[ \log \f1{p_\th\p{x_1 \., x_m}} = \sum_{i=1}^m \log \f1{p_\th\p{x_i}} \le \sum_{i=1}^m \CL\p{\theta,q_i}, \]

where

\[ \CL\p{\th,q_i} \ce \D\pff{q_i\p{\Bz}}{p_\theta\p{\Bz}} + \E_{q_i\p{\Bz}}\b{\log \f1{p_\th\pco{x_i}{\Bz}}} \]

is the surprise upper bound on the $i\nth$ observation $x_i$ given by parameters $\th$ and an approximate posterior $q_i$.

Parameterization as auto-encoders

Although the optimization above can in theory be performed jointly over $\th$ and arbitrary distributions $q_1\.,q_m$, this would mean training a separate approximate posterior for each dat point $x_i$ just for the purposes of fitting a generative model over $x$, which is expensive. In practice the distributions $q_i(z)$ are typically parameterized jointly as slices of the conditional distribution $q_\fi\pco{z}{x_i}$, giving the loss

\[ \CL\p{\th,\fi} \ce \sfor i m \p{\D\pff{q_\fi\pco{\Bz}{x_i}}{p_\th\p \Bz} + \E_{q_\fi\pco{\Bz}{x_i}}\b{\log \f1{p_\th\pco{x_i}{\Bz}}}}. \]

This is called a variational auto-encoder. As a comparison:

  • traditional autoencoders attempt to encode inputs $x_i$ into a single (lower-dimensional) value and minimize the distance between $x_i$ and the recovered value,
  • while variational autoencoders attempt to encode $x_i$ into a distribution of values and maximize the (average log) probability of getting precisely $x_i$ back.

#to-write A simple parameterization might be

  • $p_\th(z) \ce \CN\p{\mu_\th,\Sigma^2_\th}$
  • $p_\th\pco{x}{z} \ce \CN\p{A_\th z, \sigma^2I}$
  • $q_\fi\pco{z}{x} \ce \CN\p{}$

Closed form over latents

The loss above, which we can rewrite as

\[ \CL\p{\th,\fi} = \sfor i n \E_{q_\fi\pco{\Bz}{x_i}}\b{\log \f{q_\fi\pco\Bz {x_i}}{p_\th(\Bz)p_\th\pco x\Bz}} \]

above is not directly amenable to gradient descent because of the $\E_{q_\fi\pco{\Bz}{x_i}}\b\*$. For the purposes of #to-write by backprop, enough to come up with some closed/analytical form for the loss

once $x_i$ is fixed:

  • for $\E\b{\log \f1{p_\th\pco{x_i}{\Bz}}}$: need both
    • $\log p_\th\pco{x_i}{z}$ is quadratic in $z$ (this is the case for e.g. gaussians with means linear in $z$)
    • $\E\b{\Bz}$, $\E\b{\Bz\Bz\T}$ analytically computable from $\fi$
    • (or more generally, need whatever form $\log p_\th\pco{x_i}{z}$ takes a function of $z$ to be a quantity whose integral we can compute analytically from $\fi$)
  • for $\D\pff{q_\fi\pco{z}{x_i}}{p_\th\p{z}}$: need either
    • $\log p_\th(z)$ also quadratic in $z$ (and as before need the moments of $z$ to be analytically computable), and $\H\p{q_\fi\pco{z}{x_i}}$ analytical somehow
    • or just let both $p_\th\p{z}$ and $q_\th\pco{z}{x_i}$ be product distributions (such that the KL factors out) and the KLs for individual coordinates are analytical (why would they not be? literally in the worst case you could bin)
      • independent latents is a pretty reasonable hypothesis because, like, you’re the one defining the latents

(note that for $\E\b{\log \f1{p_\th\pco{x_i}{\Bz}}}$ and $\E\b{\log \f1{p_\th\p{\Bz}}}$ you do care about the moments, not just their gradients wrt $\fi$, because the raw values are used in the gradients for $\th$)

Fitting analytical data

#to-write

  • imagine that we instead have some analytical description of the data itself, and want to avoid sampling

#to-write

  • specific modeling assumptions for $p_\th$ and $q_\fi$ which make the computation of the loss tractable
  • typical VAE/ARC setting:
    • $p_\th(z)$: product distribution (but each factor pretty arbitrary, though densities have to be available and analytic)
    • $p_\th\pco{x}{z}$: gaussian around a linear combination of features using $z$ as coefficients
    • $q_\th\pco{z}{x}$: each $z$ is gaussian with fixed variance, and whose mean depends in a low-rank way on $x$
  1. Note that this would induce correlations between the costs of successive things the encoder wants to encode